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Symmetrised Kronecker products of the fundamental 
representation of Sp(n, R )  

M J Carvalho 
Department of Mathematics, Physics and Computer Science, Ryerson Polytechnical 
Institute, Toronto, Ontario, Canada M5B2K3 

Received 14 November 1989 

Abstract. The role played by S-function series in the character theory of the non-compact 
symplectic group Sp( n, R j is exploited to derive general formulae for the evaluation of 
symmetrised Kronecker products of the fundamental Sp( n, R )  representation. Applications 
of the results to Sp(3, R )  and their impact on the nuclear symplectic shell model (SSM) 
are discussed for simple cases. 

1. Introduction 

The importance of group characters in the theory of group representations is well 
established. In particular, the characters of the unitary groups, for which analytic 
expressions are given by Weyl’s celebrated character formula (Weyl 1939), play a 
central role in the theory of both Lie group and the symmetric group. U( n) characters 
are homogeneous symmetric polynomials in the characteristic values ( a , ,  . . . , an) of 
the U(n)  matrices. They are known from the theory of symmetric functions as Schur 
functions or S-functions (Littlewood 1940). 

Much is known about the properties of S-functions. For example, infinite S- 
function series, first introduced by Littlewood (Littlewood 1940), have since been 
extensively studied (King 1975, King et a1 1981, King and Wybourne 1982, Black et a1 
1983) and shown to play a fundamental role in the evaluation of branching rules and 
Kronecker products for compact Lie groups. 

For non-compact Lie groups, Rowe et a1 (1985) have shown that the characters of 
the positive discrete series representations of metaplectic Sp( n, R )  are expandable as 
infinite series of U( n) characters, or equivalently, S-functions. Thus, the branching rule 

Sp(n, R)J .U(n )  
is expressible in terms of already familiar infinite S-function series. 

A systematic presentation of S-functions series was given by Yang and Wybourne 
(1986) who also suggested that symmetrised Kronecker products of Sp( n, R )  irreps 
may require the construction of new series of S-functions. 

This paper attempts to evaluate the irreducible symplectic content of the sym- 
metrised m-power of the fundamental Sp(n, R )  irrep. In the process, the S-function 
content of new generating polynomial functions is identified. 

The motivation for this problem stems from earlier work done on the nuclear 
‘symplectic shell model’ (SSM) (Rowe 1985, Carvalho et a1 1986) and is of importance 
for its implementation. 

0305-4470/90/111909+ 19$03.50 0 1990 IOP Publishing Ltd 1909 
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The symplectic shell model derives its success from the fact that it is the appropriate 
model for a many-body description of collective motion either in phenomenological 
or microscopic terms. In this model, the configuration space for a given A-particle 
nucleus is decomposed into collective subspaces which carry irreps of Sp(3, R ) .  
Phenomenological calculations in the SSM only require a knowledge of the basis of 
the Sp(3, R )  irreps they belong to. On the other hand, microscopic calculations require 
further identification of the basis states in harmonic oscillator shell model terms. 

Up to now the model has been mostly applied to nuclei whose collective properties 
are reasonably well described by restricting the full space to only one collective 
subspace. However, it has been suggested (Rowe 1985, Carvalho et a1 1986) that in 
order to explain the shell model structure of the so-called beta and gamma vibrational 
bands in deformed nuclei, one should take into account more than one collective 
space. Full application of the model then requires a knowledge of the collective spaces 
(i.e. Sp(3, R )  irreps) occurring in the shell model of a given nucleus and their relative 
importance. 

In order to obtain the Sp(3, R )  irreps which correspond to the collective subspaces 
of an A-particle nucleus, one has to determine the Sp(3, R )  irreps occurring in the 
decomposition of the product of A copies of the fundamental representation of 

Because Sp(3, R )  operators are fully symmetric one-body operators, they preserve 
particle symmetry. Therefore each collective subspace has associated with it a definite 
permutation symmetry. So, if one is only interested in determining the collective 
spaces, of the A-particle nucleus, which are of a given symmetry type, it suffices to 
evaluate the corresponding symmetrised A-power of the fundamental Sp(3, R )  irrep. 

The plan of the paper is as follows. Section 2 summarises those aspects (definitions 
and properties) of the S-function formalism which are relevant for the development 
of following sections. Section 3 reviews the role played by S-functions in the character 
theory of the non-compact group Sp(n, R ) .  In section 4 one derives general formulae 
for the evaluation of symmetrised products of the fundamental irrep of Sp( n, R ) ,  and 
in section 5 the results obtained in section 4 are particularised to systems of two and 
four particles in Sp(3, R) .  

Note that the work presented in this paper, though of special relevance to the 
nuclear symplectic shell model, is of much more general importance. A method is 
given for the explicit evaluation of symmetrised Kronecker products of the fundamental 
representation of non-compact symplectic groups, of arbitrary dimension, and the 
formulae obtained are in suitable form for automatic computation. 

SP(3, RI. 

2. S-functions and U(n) irreps 

A standard S-function, labelled by {A}  = { A l ,  A 2 , .  . . , A,} (with ( A )  a partition in n 
parts, i.e. a set of non-negative integers A 3 A 2  b A3 b . . . a A,) is a symmetric function 
of a set of indeterminates a I ,  a 2 ,  a 3 , .  . . , a,  given by 

{A}  = det(a:~'"-')/det(a:-') (2.1) 
where t and s index rows and columns, respectively, of the n x n determinants. 

Alternatively, the determinants can be written as 
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where E ( T )  is the parity of the permutation T = r17r2. . . T ,  and the sum is over all 
elements of the symmetric group S,. 

It can be easily checked that the denominator in ( 2 . 2 )  is a factor of the numerator, 
and therefore the S-function is a sum of monomials in the a ,  all of degree ( A I  = 
A I  + A 2  + A 3  + . . . +A, , ,  referred to as the weight of the S-function. 

Non-standard S-functions, for which the condition A I  3. . .3 A,, is not satisfied, 
are either zero or convertible to standard ones. The well known modification rule 
(Murnaghan 1938, Littlewood 1940) 

(2.3) 

used to standardise an S-function whose entry A, -1  < A , ,  follows directly from the 
determinantal definition (2.1). In fact, the rule (2.3) is a consequence of the property 
of determinants that interchanging two columns in a determinant merely changes the 
sign of its value. For example, 

{ A , , A z ,  . . . ,  A ,  -,, A , ,  . . . ,  A , } = - { A l , A z ,  . . . ,  A , - l , A , - , + l  , . . . ,  A,} 

a ;  a: 

a ;  a: a ;  a: 
(04) = - - -  =-{31}. 

a ;  a: 

a ;  a: a ;  a: 
(04) = - - -  =-{31}. 

By successive applications of the modification rule (2.3) any non-standard, non-zero, 
S-function can be converted into a standard one. 

Non-standard S-functions which turn out to be zero are those for which the 
corresponding determinant has at least two identical columns. It is easy to see that 
the determinant in (2.1) has identical columns i and k when the ith entry, A , ,  of the 
S-function is related to the kth entry, A k ,  by A ,  = A k  + i - k for k > i. 

As pointed out by Weyl (1939), S-functions establish the connection between the 
symmetric group and the unitary group. 

In fact, the S-functions of weight I A l =  N are in one-to-one correspondence with 
the irreducible representations of the symmetric group S,. The correspondence is 
given by expressing the S-functions in terms of the characters of the symmetric group. 

Defining the ‘symmetric power sum’ functions (Wybourne 1970), p r ,  of the indeter- 
minates a, as 

P r = C f f :  (2.4) 

{A} = (1/ N ! )  hp,yp)Sp (2.5) 

expansion ( 2 . 2 )  is straightforwardly expressed in the form 

P 

where 
(i) 

s, = pfl1pZy2. . . p >  (2 .6 )  
for each class p, 

(ii) the class 

p = 1”12y2.. . nun 

has v 1  1-cycles, v2 2-cycles,. . . v, n-cycles 
(2.7) 

(iii) h, is the order of the class, 
(iv) x r ’  are the characteristics of the particular irrep {A}  of the symmetric group 

SN. 
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On the other hand, the identification 

(2.8) 

turns the expansion (2.2) into Weyl's character formula for a covariant tensor rep- 
resentation ( A )  of U(n) (the unitary group in n dimensions). So each irreducible 
representation (irrep) of U(n) is also uniquely identified by an S-function. 

But S-functions are more important than merely for labelling representations. Their 
polynomial nature makes them amenable to operations such as addition, subtraction, 
multiplication (outer, inner and plethysm) and division. All these operations have 
their counterpart operations on representations of the group they characterise. 

It is also their polynomial nature which underlies the symbolic rules established 
for the manipulation of S-functions and the group characters they represent. As an 
illustration of the above statement, note the following. The dimension of an irrep {A} 
of U(n) is n-dependent and given by 

(y, = e B '  = e ' F '  

where (x) = (x,, x 2 , .  . . , in) is the partition conjugate to ( A )  and 1s i, j s  n such that 
A , - j a O  and A j - i 2 O .  

For example, from (2.1), the polynomial expansion of (21) in U(2) and U(3) is 
given, respectively, by 

U(2) 

{21}=a:a2+cY,a:= ais, 2 

i , j = l  

U(3) 

( 2 . 1 0 ~ )  

(2.10b) 

Since the dimension of a representation. is given by evaluating its character on the 
identity element, one concludes that the dimension of a U(n) irrep is equal to 
the number of monomials terms in the corresponding S-function expansion. Thus the 
irrep (21) has dimension 2 in U(2) and 8 in U(3) in accord with (2.9). 

Groups other than the symmetric and the unitary groups have characters which 
are not, in general, single S-functions but rather finite or infinite expansions of 
S-functions. Convenient and compact expressions of such expansions make use of 
series of S-functions. For instance, a character [ A ]  of the orthogonal group O( n )  c U( n) 
is given by 

(2.11) 

an algebraic sum of S-functions resulting from the division of { A }  by each term of the 
series C = Z y  (-l)'y''2{ y }  where I yI is the weight of { y }  and the sum includes S-functions 
which in Frobenius notation are of the type 

[ A  1 = {A I/ c 

a , - 1  a,-1 . . .  a,-1 
(2.12) 
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with a ,  > a ,  > . , . > a, ,  and r the Frobenius rank. The correspondence between the 
Frobenius notation 

(;; ;; e . 9  ar) 
. . .  6,  

and the standard notation { A , ,  A , , .  . . , A k }  is given by the relations a, = A,  - i and 
b, = XI - i where 1 c r 6 k is such that a, and b, are non-negative. So, for example, 

corresponds to (444).  
On the other hand, a character of a generic representation of Sp(n, R )  2 U ( n )  is 

given by 
((A))={A).D (2 .13)  

a sum of S-functions obtained in the (outer) product of {A}  by each term of the series 
D = Z 6  ( 6 )  where (6) are partitions with only even parts. 

The important series of S-functions that have been identified in such applications 
are known to have rather simple generating functions (Littlewood 1940, Yang and 
Wybourne 1986). For example, the generating functions of the series C and D are 
given, respectively, by 

n 

c=n: ( 1 - a i a j ) = C ( - l ) ’ y ” 2 { y }  
iSJ 

n 

D =  fl ( l - a i a j ) - ’ = C { S } .  
i s j  

( 2 . 1 4 ~ )  

(2 .14b)  

Another series which is of importance to this paper is the series M whose generating 
function is 

( 2 . 1 4 ~ )  

where { m }  is any S-function in one part only. 

of each other, for a given n, i.e. 
As is clear from the above polynomial functions, the series C and D are inverses 

C.D = 1 = C ( - l ) ’ y”2{  y } {  S }  = (0) = 1 .  
Note the two following features about series in general. 
(i) For a finite value of n, where n is the number of indeterminates, a series is 

finite if and only if the indeterminates ai do not appear in the denominator. So in 
(2.14) only C is finite for a finite value of n. 

(ii) The maximum number of parts with which the S-functions can appear in a 
series is equal to n. An exception to this rule occurs for the series M and the members 
of the M family, namely 

M + = $ ( M + M ~ ) =  C { m }  

M - = ~ ( M - M + ) =  C { m }  

which have only one part regardless of n. 

m even 

m add 

(2 .152)  

(2.15 b )  

( 2 . 1 5 ~ )  
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3. Sp(n, R )  and S-functions 

Among the representations of the non-compact symplectic group Sp( 2un, R ) ,  the 
representation spanned by the states of the 2un-dimensional harmonic oscillator plays 
a very important role in physical applications. 

A realisation of the associated symplectic algebra in terms of creation and destruc- 
tion harmonic oscillator operators is 

I ( 3 . 1 ~ )  A: = bT’b*f 

(3.lb) 

( 3 . 1 ~ )  

with 

[br’, b j ‘ ]=[b: ,  bi]=O [b:, b j f l =  6,,&f 

for i , j =  1 ,2 , .  . . , n and s, t = 1,2 , .  . . ,2u .  
More precisely, the harmonic oscillator representation is a unitary infinite- 

dimensional representation of the double covering group (called the metaplectic group) 
of Sp(2an, R )  which is reducible into two fundamental irreps denoted by 

(1/2(0)) and (1/2(1)). (3.2) 
The notation used in (3.2) expresses the fact that these irreps can be built from 

lowest-weight states of the representations of the maximal compact subgroup U(2an) 
with lowest weights 

3 1 1  (1/2(1))- (I, I, I,. . . ) 1 1 1  (1/2(0))- (I ,  I ,  I , .  . . ) 
respectively. 

Under the restriction 

sP(2un, R)J.Sp(n, R )  x O ( 2 u )  
the two subgroups, Sp(n, R )  and O(2u) are complementary (Moshinsky and Quesne 
1971, Kashiwara and Vergne 1978). This implies that the irreps of O(2u)  are uniquely 
determined by the irreps of Sp( n, R )  and vice-versa. Then, one has the branching rule 

where (u(A)) is a character of an Sp( n, R )  irrep, [ A ]  the character of the corresponding 
O(2a)  irrep and the sum includes partitions ( A )  for which (A) = (A,, A*, . . . ) satisfies 
the constraints A I  +I2< 2u and 1, s n. 

Following Rowe et a1 (1985), the U(n) content of an Sp(n, R )  irrep (u(A)) is 
inferred by comparing the two branching rules 

Sp(2un, R )  J. Sp( n, R )  x O(2u)  U( n) x O(2u)  

Sp(2un, R )  J. U(2un) 5. U( n )  x O(2u)  

(3.4a) 

(3.46) 

(3.5) 
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(i) 
(ii) {A,} is a signed sequence of S-functions 

is the U(1) c U( n) character; E'(g) = (det 8)"; 

{A,} = {A}+C *{PI 
with the sum including those S-functions { p }  for which the corresponding O(2a)  irreps 
* [ p ]  are equivalent to [ A ]  under the modification rules of O(2a).  For example, for 
2 u = A  and n > A  

{25} = (2)- {22A-'} 

(iii) the symbol in (3.5) means product of the S-functions of the signed sequence 
by those of the D series; 

(iv) the index k = min(2a, n )  indicates that only S-functions with up to k parts 
are to be retained in the product. 

Note that a signed sequence {A,} reduces to its leading term { A }  when cr> n. 
However, in order to account for those cases where non-trivial signed sequences occur, 
it is more convenient for present purposes to label an Sp(n, R)  irrep by (a{A,}) instead 
of using, as in (3.3), the notation (u(A)) of Rowe er al (1985). So for example, what 
in the former notation would be the Sp(3, R)  irrep (l(2)) one labels now by (1({2}- 
(22))). By this simple device, the Sp( n, R)  1 U( n) characters become much more 
tractable. 

In the new notation, the branching rule ( 3 . 5 ~ )  becomes 

and its inverse 

(3.6a) 

(3.6b) 

where in (3.6b) use was made of the fact that D and C are inverse series. 
It is known that the (a{As}) Sp(n, R)  irreps arising in the branching rule (3.3) are 

in one-to-one correspondence with those obtained in the reduction of the Sp(n, R )  
tensor representation 

((1/2{0}) + (1/2{1}))((1/2{0}) + (1/2{1})) . ' . ((1/2{0}) + (1/2{1})). (3.7) 
2 u  times 

However, what is needed in practical applications is a knowledge of which irreps occur 
in suitably symmetrised products of representations corresponding to systems of 
particles that are identical to within, for example, spin and/or isospin differences. 
What we need is to construct many-particle spatial wavefunctions of well-defined 
permutation symmetry (as well as Sp( n, R )  symmetry) that can subsequently be com- 
bined with spin isospin wavefunctions, of contragredient permutation symmetry, to 
form totally antisymmetric states in accordance with the requirement of the Pauli 
principle. To achieve this objective, we make use of the fact that the symmetric group, 
S Z U ,  of permutations of A = 2 a  particle space coordinates is a subgroup of O(2a).  
Thus we consider the branching rule 
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The task to be done is then to determine the cAf coefficients giving the (U{,+,}) irreps 
that occur with a given permutation symmetry {f}. To my knowledge this task has 
not been previously attempted. 

The desired coefficients can be obtained in one of two ways. 
(i)  Direct method: evaluation of the plethysm 

(( 1 /2{01) + (1/2{ 11)) 0 {f}. (3.9) 
Then if { f }  denotes the desired space permutation symmetry of the A = 2 v  particle 
states, the Sp(n, R )  irreps obtained in the reduction of the above plethysm are in 
one-to-one correspondence with the irreps (U{  As}) of (3.8). 

(ii) Indirect method: given an Sp(n, R )  irrep, (u{As}), one can determine with 
which permutation symmetries it occurs, and their multiplicities (coefficients cAf), by 
exploiting the complementarity between Sp(n, R )  and O(2u) and making use of the 
branching rule O(2u) .1 S 2 u  (Dehuai and Wybourne 1981). 

The first method is described in detail in the next section. An example of application 
of the second method is given in subsection 5.2. 

4. The plethysm (( 1/2{0}) +( 1/2{1}))0{f} for Sp(n, R )  

The method for evaluating normal or symmetrised Kronecker products of Sp(n, R )  
representations will be, first, to express their characters in terms of S-functions by 
branching down to U(n),  then to perform the corresponding operations on the S- 
functions and finally to invert the branching rule in order to return a result in terms 
of Sp(n, R )  characters. 

The S-function expansion of the fundamental irrep of Sp(n, R )  is simply the M 
series, i.e. 

Sp(n, R).1U(n) 
(1/2{0})+ (1/2{ 1})& &1’2({o}.D+ {l}.D)l= & ” 2 M  (4.1) 

where ({O}.D), = M,, ({l}.D)l = M -  and M++ M- = M (cf (2.15)). 
Then for the plethysm one has 

Sp(n, R)&U(n).TSp(n, R )  
((1/2{0})+(1/2{1}))0{f}.1 &‘(M@{f}) f ( f f { M @ { f } * C } k )  

with k = min(2u, n). It follows then that 

and all one has to do is to obtain the S-function content of M O { f } . C .  The appropriate 
route here is to follow the method of McConnell and Newell (1973). 

According to McConnell and Newell, the S-function content of a series can be 
found by converting its polynomial generating function into a sum of determinantal 
ratios. For example, the C series given by (cf (2.14a)), 

k 

C =  i s j  n (l-aia,)=det(af-s-af+”)/det(cuf-’) (4.3) 

corresponds to the sum 

2 4 6 8 . . .  2k 
0 0 0 0 . . .  

(4.4a) 
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of 2k Schur functions, not all necessarily standard, obtained by putting 0 or 21 for the 
Ith entry, 1s 1 s k, and the negative sign being affixed only when an odd number of 
entries 2,4 ,6 ,  . . . ,2k are taken. For example, the notation {:} means (3 = (0) -{2}. 
Using modification rules on the non-standard S-functions of (4.4a) again yields the 
familiar expansion 

c =c (-l)iyi’2{y} (4.46) 
Y 

limited to partitions with up to k parts. 
For instance, for k = 3 (4.4a) gives 

C = (000) -(200) - (040) + (240) - (006) + (206)+ {046} - (246). 

Reducing the parts in each S-function to descending order, one obtains, as expected. 

C = { 0) - { 2) + { 3 1 } - { 33) - (4 1 1 } + { 43 1 } - { 442) + { 444). 

Now, the S-function content of any other generating polynomial function, of which 
C is a factor, can be determined by simply multiplying the rows of the determinant 
in the numerator of (4.3) by the corresponding terms of the co-factor polynomial. 

By way of example consider 

which is the generating function of the product series M.C. Its S-function content is 
obtained in the following manner 

r 1 

= d e t l x  - a T + k + s )  [det( a :-’)I-’. 
m 

(4.6) 

Expanding the determinant in the numerator with respect to s and m, 

M.C = det(a:-’ + a:, a:-2+ a:-’ + a:  + a:+’, . . . , a:+ a :  +. . . + a:k-’)/det(a:-’) 

and rearranging the columns of the determinant by subtracting linear combinations of 
earlier columns 

M.C=det(a:-’+at( ,  a:-’+a:+’,.. . , (~:+a:~-’)/det(a:-’). (4.7) 
Finally, using (i)  the property that a determinant where the elements of a column are 
the sums of a like number of terms is equal to the sum of the determinants in which 
the elements of the column in question are replaced by the individual terms, and 
(ii) the definition (2.1) extended to non-standard S-functions, one obtains from (4.7) 
the finite series 

1 3 5 . . .  2k-1 
0 0 0 . . .  

M . C = C  (4.8) 

where the sum includes 2k S-functions for which the Ith entry is either 0 or 21 - 1 with 
l s l s k .  
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It is straightforward to check that after application of the modification rules to 
(4.8) the result is the series G restricted to S-functions with up to k parts, as expected. 
Indeed the result in this case could have been obtained much more quickly by simply 
reducing the product of the generating functions of M and C to the generating function 
of G (Yang and Wybourne 1986); i.e. 

k k 

M.C=JJ(l-ai)- l  n ( l - a l a j )  
i i s j  

k k k 

= n ( 1 - a i ) - l  JJ ( 1  - a?)  n ( 1 - aiaj) 
i I i < j  

k k 

= n (1  + .I) n (1  - ala,) 

= G. (4.9) 

I I < J  

For the trivial case {f= l}, we have 2a = 1 and hence k = 1 .  The series G restricted 
to S-functions having only one part is the series 

GI ={O}+{l}. 

(4.10) 

The evaluation of the plethysm { M O { f }  .c}k with {f} different from (1) involves 

(i) {f} is an irrep of the symmetric group S 2 T ,  so one uses (2.5) to expand it in 

(ii) Plethysm is an operation distributive on the right with respect to addition and 

the following considerations. 

terms of the power sum functions. 

multiplication. So one has 

(4.11) 

1,). For 
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( M o { i4)). c 
= $[ ( M  O P , ) ~ . C  - 6( M @pi ) 2 (  M O p z ) . C  + 8( M @pi M OP,) .  C 

+ 3 ( M  Op2) (  M O p 2 )  C - 6( M 0 ~ 4 ) .  C ] .  

In general, one has to evaluate two typical terms. 

(4.12) 

The explicit expansion of these plethysms is given, for Sp(3, R ) ,  in subsection 5.2. 

Term 1 .  

( M O P ,  )". c. 

P ( a ) O p r =  P(a7 
Making use of the property that 

where P(a) is a polynomial in the al, we have 

{( @pm )"* c)  k 

(4.13) 

k k 
= n ( l - a : ) - "  JJ (1-ap,)  

1 I S I  

f )[det( a:-")]-' (4.14) = det ( ( a 7 ! s J m + . .  . + q i s J m + k - s  - a q / " m + .  . .+q) ,"m+k+s 

q l l l  

which following the method illustrated before, will yield the series of S-functions 

obtained by putting either 2:  qj')m or XY q1"m +21 for the lth entry and affixing the 
minus sign when an odd number of I, qj"mt-21 entries are taken. 

Note that the parameters 4;'' can take integer values from zero to infinity indepen- 
dently and thus the same S-function may appear more than once. For example, the 
S-function { m ,  0, . . . 0) appears with multiplicity n in the above expansion. 

Term 2. 

(4.16) 

(4.17) 
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which corresponds to the following sum of S-functions: 

Again the S-functions are such that the Ith entry is either E7 qi"mi or 27 q$"mi+21 
with the minus sign being affixed when an odd number of entries of the second type 
is taken. Here again, with the exception of the single S-function {0}, all the others 
may appear with multiplicity. 

5. Illustrative examples for Sp(3, R )  

Due to the importance, in physical applications, of the symplectic group in three 
dimensions, explicit examples of the expansion of ( a { M O { f } . C } k )  are given, in terms 
of Sp(3, R )  characters. 

5.1. Two-particle case in Sp(3, R )  

The tensor product ((1/2{0})+(1/2{1}))((1/2{0})+(1/2{1})) of Sp(3, R )  irreps contains 
symmetric ( 2 )  and antisymmetric { 1 2 }  parts. If the product corresponds to a coupled 
system of identical particles it should be either one or the other. It follows then that 
in order to know which S p ( 3 ,  R )  irreps are compatible with each permutation symmetry 
one has to evaluate the two following symmetrised products: 

where here the maximum allowed number of parts, k, for the S-functions is only two 
(recall k = min ( 2 , 3 ) ) .  

Particularising (4 .15)  for m = 1 and n = 2 ,  one has that 

( 5 . 3 a )  

( 5 . 3 6 )  

( 5 . 3 c )  

( 5 . 3 d )  

where q l ,  q 2 ,  q;  and q; can take any integer value independently. 
It is straightforward to verify that the following hold true. 
(a) (0) can only occur once (q l  = q2 = qj = q; = 0) from ( 5 . 3 ~ ) ;  its multiplicity is 1 .  
(b) ( 1 )  occurs twice (ql = 1 ;  q2 = 4; = q; = 0 or q2 = 1; q, = 41 = q;  = 0) from ( 5 . 3 ~ ) ;  

its multiplicity is 2. 
(c) Any S-function {n} with n 2 2  occurs only from terms ( 5 . 3 ~ )  and ( 5 . 3 ~ ) ;  its 

multiplicity equals the difference between the number of times it occurs in ( 5 . 3 ~ )  and 
in ( 5 . 3 c ) ,  which is always 2.  

(d) ( 1 1 )  occurs from ( 5 . 3 ~ )  with multiplicity 4 ;  however, its multiplicity is reduced 
to 1 since the non-standard S-function {02} = - { 1 1 }  occurs with multiplicity 3,  also 
from the same term ( 5 . 3 ~ ) .  
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(e) The multiplicity of an S-function of the type { n ,  l) ,  where n > 1, is zero. This 
is so because the standard { n ,  1) S-function occurs as many times as the non-standard 
(0, n + l ) ,  resulting in total cancellation. 

(f) All S-functions of the type {m,  2) with n 3 2  appear with multiplicity -2. 
Consider, for example, (32) 

from ( 5 . 3 ~ )  

from (5.36) -2{14) =2{32} 

from ( 5 . 3 ~ )  -6{32). 

12{32)+ 10{14}= 12{32}- 10{32}=2{32) 

Total = -2{32). 

up to zero. 
(g) Contributions from (5.3) to any S-function { n ,  m ) ,  with n a m and m 5 3, add 

Thus one has 

{(MO P J 2 . C L  

= (0) + 2{l}+ { 11}+ 2{2) - 2{22) +2{3) - 2{32} 

+2{4)-2{42)+2{5)-2{52)+. . . . (5.4a) 

Now, particularising (4.18) for m = 2 and n = 1, one obtains 

{ ( M O p , . C ) ) ,  = {2q, 2q')-{2q, 2q'+ 4)-{2q + 2,2q') + {2q +2,2q '+  4) 

and the only S-functions that survive are (0) and { 11). Thus 

{ ( M  OP2.C)12 = (0) - 11 1). (5.46) 

Substituting (5.4a) and (5.46) into (5.1) and (5.2), one obtains the Sp(3, R )  results 
(cf (4.2)): 

((1/2{0)) + (1/2{11)) O W  

= +(1{11)+(1({2} -{22}))+(1({3} -{32})) 

+(1({4)-{42)))+(1({5}-{52)))+. . . 
(( 1/2{0)) + (1/2{ 1))) 0 I1 1) 

= (1{11})+(1{1})+(1{2} - {22}))+ (1({3) - {32})) 

+(1({4} - {42)))+(1({5) - (521)) +. . . 
The two-particle case is simple enough for an analytical method to be used as an 

alternative to derive the above results. Note that M O P ,  = M, so that 

( M O p l ) 2 . C  = MMC. 

Expressing MMC in terms of the indeterminates ai, one has 
2 2 2 

I I S ,  I 

MMC = n (1 - a, ) -2  n ( 1 - ap,) = f l ( 1  - a,)-]( 1 + a,)( 1 - a1 a*). 

But lIi (1 - ai) - ' (  1 + a i )  is the generating function (Yang and Wyboume 1986) of the 
S-function series 

S*={01+2 c {n1+2 
n P l  n P  1 
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i.e. the series S restricted to partitions with not more than two parts and 

( 1 - a ,  a2) = { O} - { 1 ’} s 

MMC = S ,  .({O} - { 12}) = {0} + { 12} + 2{ l }  + 2 

Thus 

({  n} - { n, 2)). (5 .5)  
n 2 2  

On the other hand, M@p,.C = M M i C  (recall ( 2 . 1 5 ~ ) )  is simply 
L L 

MM+C =n (1 - n (1 - a,a,) = (1 - a ,az )  = {o}-{i2}. (5.6) 
I IS, 

So the expansions (5.4) have been obtained again. 

which occur with permutational particle symmetry (2) are 

(1{0}?, (1{1)), (1({2}-{22)?, (1({3}-{32})?, (1({4}-{42})), . . . , (l({a}-{n2})?,  . . . 
and with permutational particle symmetry { 1’) 

(1{1}),(1{1~}),(1({2}-{22}?, (1({3}-{32})),(1({4}-{42})?, . . . , ( l({n}-{n2})),  . . . . 
These irreps are listed in increasing order of their excitation energy in the harmonic 
oscillator shell model space. The excitation energy nhw of an irrep (l{A,}) is defined 
as the energy of its lowest-weight state and is given by n = A l + A 2 + A 3  of the leading 
S-function { A }  of the signed sequence {As} .  

The lowest-weight state of an Sp(3, R )  irrep is defined as the state that satisfies the 
conditions 

Summarising then, one has that the Sp(3, R )  irreps for a system of two particles 

B,,@LWS = 0 

C,@LWS = 0 

i, j = 1,2,  3 
j > i = 1 , 2 , 3  

where B,, = X s  b:bs and C, =$XI  (b;’bs+b:b,”),j> i, are the lowering operators of 

A two-particle lowest-weight state for an Sp(3, R )  irrep (l{n,}) of excitation energy 
SP(3, RI. 

nhw can be written 

where po(ks) are normalised single-particle harmonic oscillator wavefunctions in one 
dimension. To ensure that (5.7) is indeed a lowest-weight state, one has only to require 
that 

B,l@L.WS = 0. 
Since 

bibtcp‘,” = J k ! / ( k  - 2)! ( ~ f 2 2 & ,  

one has then 

which will vanish for a particular combination of the coefficients ak. 

appropriately symmetrised state. 
Application of permutation operators to such a lowest-weight state will yield an 
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5.2. Four-particle system 

The 4He nucleus is already of interest to the nuclear symplectic shell model. In this 
section, the lowest excited collective spaces, of definite particle symmetry, of the 4He 
configuration space will be identified. To achieve this objective, one needs the following 
partial results. 

{ ( M @ P I ) ~ . C ) ~  

(i)  

= { n, + n, + n3 + n4, n + n; + n; + n;, n + n; + n;+ n:} 
- {n, + n2 + n3+ n4, n ;  + n;+ nj+ n;, nl+ n; + n:+ n: +6} 

- {n, + n,+ n,+ n4, n ;  + n; + nj + n:+4, n; + n; + n: + n:} 
+{n, + n 2 +  n3+ n4, n ;  + n;+ n;+ n;+4, ny+ n;+ n:+ n,"+6) 

- { n l +  n 2 + n 3 +  n4+2, n:+ n;+ nj+ n:, ni:+n;+ n;+ ni} 

+{n,+ n,+ n3+n4+2,  n { + n ; + n j + n ; ,  ny+n;+n:+ni+6} 

+{n, + n,+ n3+ n4+2, ni+ n;+ ni+ n;+4, nl+ n;l+ n : + n : }  

- { n l  + n,+ n3+ n4+2, nl+ nj+ nj+ n&+4,  n;+ n 5 +  n$+ n i + 6 }  

where nrr  ni, n:' ( i  = 1 , .  . . , 4 )  can take any integer value from zero to infinity indepen- 
dently. 

Up to weight 4, the S-function expansion is explicitly 

{ ( M  @PI 1". Cl3 
= {0} +4{ 1) + 6{11} +9{2} + 16{3} + 16{21} +4{ 11 1) +25{4} + 30{31} 

+ 10({22}-{222})+9{211}+. . . . ( 5 . 8 )  

(ii) 

{ ( M O P 3 ) ( M O P , ) . C ) 3  
={3nl+ n 2 ,  3n ' ,+n ; ,  3ny+n;} 

-{3n,+ n2,3n;+ n;, 3ny+ n;+6} 

- { 3 n l + n 2 , 3 n ; f n ; + 4 , 3 n j ' + n ; }  

+ {3n, + n,, 3n: + n; +4,3n;  + n; + 6) 

+n j ,3n ;+n ;}  

+n;+4,3n;+n;} 

+ n;, 3n;+ n;+6} 

+n;+4,3ny+n;+6} 

where ni, nl, n:' ( i  = 1,2) can take any integer value from zero to infinity independently. 
Up to weight 4 the S-function expansion is explicitly 

{( M OP3) (M @PI 1. Cl3 
= {0)+{l}+0{ll}+0{2}+{3} -2{21}+{111}+{4}+0{31} 

-2({22}-{222})+0{211}+. . . . (5.9) 
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(iii) 

{( M 0 p2)’. c}3 

= { 2 n 1 + 2 n , , 2 n ’ , + 2 n i , 2 n q + 2 n ~ }  
- {2n1 + 2 n 2 , 2 n {  + 2 n i ,  2n; +2n;  +6}  
- {2n1 + 2 n 2 , 2 n  ‘, + 2 n i  + 4 , 2 n  y + 2n;} 

+ { 2 n , + 2 n 2 , 2 n ’ , + 2 n ; + 4 ,  2 n q + 2 n g + 6 }  
-{2n1 + 2n,+2,2n’ ,  +2n; ,  2nq + 2 4 )  

+{2nI+2n2+2,2n:  +2n; ,  2 n : + 2 n p 6 }  
+ {2n, + 2 n 2 + 2 ,  2n’, + 2 n ; + 4 , 2 n q  + 2n;} 
-{2n, +2n2 + 2 , 2 n i  + 2 4 + 4 , 2 n ;  +2n,”  +6} 

where n,, n:, n: ( i  = 1 , 2 )  can take any integer value from zero to infinity independently. 
Up to weight 4, the S-function expansion is explicitly 

{( M 0P2)2 .c}3  
= {O}+O{ 1 )  +{2} - 2{11}+0{3} +0{21}+0{ 11 1)  + (4)  - 2{31} 

+2({22}-{222})+{211}+. . . . (5.10) 

(iv) 

{( M 0 P 2 )  ( @PI }3 

= { 2 n , + n , + n , ,  2 n ’ , + n ; + n ; ,  2n ; ’+n ,”+n,”)  
-{2n, + n2-t n3,2n’ ,  + ni+ n;, 2 n q +  n,”+ n;+6} 

-{2n, + n2+ n 3 , 2 n i +  n;+ n ; + 4 , 2 n q +  n;+ n;} 
+ {2n1 + n2 + n 3 ,  2 n i  + n;+ ni + 4 , 2 n q +  n; + n;+6} 

- {2n1 + n 2 +  n3 + 2 , 2 n ;  + ni+ n;, 2nq + n;+ n;} 

+ {2n,  + n 2 +  n3+2,  2n ;  + ni+ n;, 2n;+ n;+ n;+6} 
(2nl-k n2-t n3 + 2,2n‘ ,  n;+ n;+4,2nq + n; + n;} 

- { 2 n , + n 2 + n 3 + 2 ,  2 n ‘ , + n i + n ; + 4 , 2 n ; + n ; + n ; + 6 }  

where n,, nl, n:’ ( i  = 1 , 2 , 3 )  can take any integer value from zero to infinity indepen- 
dently. 

Up to weight 4 the S-function expansion is explicitly 

{( @p2) ( 0 p I 12* 1 3  

= (0) +2{1}+ 3{2}+ O{ l l}+4{3} + 0{21} -2{111}+ 5{4} +0{31} 

+0({22}+{222})-3{211}+. . . . (5.11) 

(v) 

{(MOP,).C},  
= {4n, 4n’, 4n”} - {4n, 4n’, 4 n ” + 6 }  - {4n, 4 n ’ + 4 , 4 n ” }  

+{4n, 4n‘+4,4n”+6}-{4n +2 ,4n‘ ,  4nr’}+{4n +2,4n’ ,  4n”+6} 
+{4n+2,4n’+4,4n”}-{4n+2,4n’+4,4n”+6} 

where n, n‘, n“ can take any integer value from zero to infinity independently. 
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Up to weight 4, the S-function expansion is explicitly 

{(M@P,).C)3 
= (0) +0{1) - {2)+0{ 1 l)+0{3)+0{21)+0{111)+ (4) 

+0{31)+0({22)-{222))+{211)+. . . . (5.12) 

The coefficient associated with a particular S-function, in each one of the expansions 
(5.8)-(5.12), can be easily computed. By way of example, the method followed in the 
calculation of the coefficient of the S-function {222), is given in table form. Table 1 
gives the number of combinations of n , ,  n2 ,  n 3 ,  n4 for which their sum, N, is 
N = 0,. . . , 4 .  Contributions to the total coefficient of (222) also come from the 
non-standard S-functions {213), {132}, {033), (114) and (024). Their occurrence in 
each term (i)-(v) is given in table 2. 

Combining now results of equations (5.8)-(5.12), according to equations (4.12), 
one finally obtains 

(( 1/2{0)) + 

((1/2{0})+(1/2{1}))~{31} 

1))) 0 (4) 
= (2{ 0)) + (2{ 1 )) + (2{ 2)) + 2( 2{ 3)) + 3 (2{ 4)) + ( 2{ 3 1 )) + . . . 

= (2{1})+2(2{2))+(2{11))+3(2{3))+2(2{21))+4(2{4)) 
+4(2{31))+(2({22) -{222)))+. . . 

((1/2{0)) + (1/2{1))) 0{221 

= ((21) + M31)  + 2(2{211) + 2(2{41) + 2(2{31)) 
+ 2(2( (22) + (222))) - (2{211)) + . . . 
Table 1. Number of combinations of n , ,  n 2 ,  nj ,  n4 for which the sums in each column 
add up to N = 0, . . . , 4 .  

N n ,  + n , +  n3+ n4 3 n ,  + n2 2n, + 2 n ,  2 n , + n , + n ,  4n 

0 1 
1 4 
2 10 
3 20 
4 35 

1 1 1 1 
1 0 2 0 
1 2 4 0 
2 0 6 0 
2 3 9 1 

Table 2. Occurrence, in each term (i)-(v), of the S-functions that lead to the multiplicity 
of {222} in each expansion (5.8)-(5.12). 

{222) 
{132} = -{222} 
{213} = -{222} 
{033} = +{222} 
{114}=+{222} 
{024} = -{222} 

Total 

~~ 

900 
800 
720 
400 
560 
350 

-10 

~ ~~ 

( i i )  ( i i i )  (iv) (v) 

0 4 48 0 
2 0 48 0 
0 0 36 0 
4 0 36 0 
2 0 36 0 
2 6 36 0 

+2  -2 0 0 
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((1/2{0)) + (1/2{1})) 0 {212} 
= (2{ 1 1 }) + (2{ 3)) + 2(2{ 2 1)) + (2{ 1 1 1)) + 2(2{4}) + 4(2{3 1 }) 

+(2({22) - {222}))+2(2{21 l ) )+  . * . 
( ( 1 / 2 { 0 } ) + ~ 1 / 2 { 1 } ) ) 0 { 1 ~ ~ = ( 2 ~ 3 1 ~ ) + ( 2 ~ 2 1 1 ~ ) + .  . . 
where all Sp(3, R )  representations of ,He, up to harmonic oscillator excitation 4hw, 
are displayed. 

Thus one concludes, for instance, that the ground-state collective space of ,He, 
labelled by (2{0}), can only occur with permutational symmetry (4). Likewise, the 
collective space of excitation 4hw labelled by (2({22}-(222))) can occur with sym- 
metries (31) and {211}, once, and with symmetry (22) twice. 

The above results can be checked, term by term, using the indirect method mentioned 
in section 3. This method exploits the complementarity between Sp( n, R )  and O(2u) ;  
in this case, Sp(3, R )  and O(4). Thus, for each Sp(3, R )  irrep (2{A,}) there is an O(4) 
irrep [A] ,  and if [ A ]  is compatible with certain permutational symmetries, so is its 
Sp(3, R )  counterpart. So, if, for example, one wants to know with which symmetries 
one can construct the Sp(3,R) irrep (2({22}-{222})), one just has to make use of the 
branching rule O(4) .1 S, for [22]. 

The branching rules for O ( n ) $ S ,  have been studied by Dehuai and Wybourne 
(1981), who gave an n-independent prescription for their evaluation. According to 
their results, the O(4) character [22] is expressed in S,  characters by 

[22] $(22)+2(21)+(3)+ 3(2)+(11)+(1) 

where the characters of the symmetric group are given in reduced notation. Converting 
them to characters of S ,  and using modification rules on the non-standard ones 

(22) = (022) = -{ 122) = 0 

(21) = (121) = 0 

(2) = (221 
(1 1) = (21 l}  

(1) = (311 

(3) = { 13) = -{22} 

one gets the expected result 

o ( 4 )  J s4 [22]J {31}+2{22}+{211). 

In conclusion, the technique required for the evaluation of symmetrised Kronecker 
products of the fundamental representation of Sp( n, R )  has been given, and general 
formulae produced. The solution of this problem is of particular relevance to the 
identification of the collective spaces of a given nucleus in the framework of the 
symplectic shell model. Further work on this problem will include the automation of 
the calculation of the coefficients cAf. 
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